Research
The overall goal of the research in my group is to understand the regulation and control of cellular energy metabolism. A tight choreography of the nuclear and organellar genomes within the eukaryotic cell is essential for the establishment of cellular energy metabolism during development and for acclimation to changing demands on cellular metabolism when growth conditions are changing. Our projects endeavour to identify the intracellular signalling mechanisms that coordinate the dynamic interaction between the different genomes during major cellular metabolic transitions.
Mitochondria and chloroplasts are the powerhouses of the cell and exposure to stress inhibits metabolic activities leading to severe constraints on cellular energy homeostasis. Failure to restore either respiration or photosynthesis severely affects vigour, and possibly survival, of the organism. Communication between the organelles and the nucleus, so called retrograde signalling networks, are essential for the recovery of energy metabolism following stress but also for the establishment of cellular energy metabolism. Mutants where this communication is impaired have dysfunctional organelles and severely impaired cellular energy metabolism. For plants this can have fatal consequences, and in humans dysfunctional mitochondria-to-nucleus signalling has been linked to the aging process and to several severe diseases.
To address the regulatory mechanisms that control the dynamic interaction between the different genomes we take an integrative approach using a combination of genetics, molecular biology, biochemistry, cell biology and biological modelling. We also combine several model systems including Arabidopsis plants and an Arabidopsis cell line, as well as conifers such as spruce and pine. Our work is divided into two large lines of research composed of several sub-projects.
Chloroplast development and establishment of photosynthetic activity
In this project the focus is on the signalling network controlling the development of functional chloroplasts and the establishment of photosynthetic activity. This developmental process drives a cellular metabolic shift in the cell from requiring external energy sources for growth and development to becoming a supplier of energy to support growth of new developing tissues. This transition in cellular metabolic activity requires a complex regulatory network involving several cellular compartments, extensive chromatin reorganisation and massive transcriptional changes. Several sub-projects address the different aspects of this process.
Integration of energy and retrograde signalling pathways during plant stress responses
Within this project we investigate the integration of energy and retrograde signalling pathways during plant stress responses. We have identified CDKE1 as a central component receiving stress induced retrograde signals for both chloroplasts and mitochondria. Furthermore, CDKE1 regulates the redistribution of energy and metabolism towards either growth or stress response. Given the position of CDKE1 in the Mediator complex, this kinase could act as a sensitive relay between organellar retrograde signals and their cognate promoter-bound, stress-induced TFs and RNA polymerase II (RNAP II), regulating the expression of appropriate genes in response to stress conditions. Several sub-projects address the interaction partners of CDKE1 and the targets for its kinase activity.
Team
- 2019: Physiologia Plantarum Prize for outstanding contribution to plant sciences
- 2013: Professor, Plant Cell and Molecular Biology, Umeå University
- 2012: Chairman of the UPSC board
- 2008: Research Fellow at The Royal Swedish Academy of Sciences
- 2008: Associate Professor/Docent, Umeå University
- 2007: Award for young scientists, Umeå University
- 2004: FESPB young investigator award
- 2004: FFL2, Young investigator award, Foundation for Strategic Research (SSF)
- 2003: Assistant Professor funded by the Swedish Research Council (VR)
- 2000-2002: EMBO Postdoctoral fellow, Salk Institute for Biological Studies, Howard Hughes Medical Institute and Plant Biology Laboratory La Jolla, USA
- 2000: PhD, Plant Molecular Biology, Umeå University
- 1995: MSc, Molecular Biology, Umeå University
- ARC19-0051, 2020-2025, Redesigning photosynthesis for future food security
SSF Agenda 2030 Research Centers (ARC), Foundation for Strategic Research (SSF)
SEK: 50 000 000 (main applicant) - SB16-0089, 2017-2022, Decoding signalling networks controlling plant stress responses
Systems Biology call, Foundation for Strategic Research (SSF)
SEK: 35 000 000 (main applicant) - 2016-2021, Mediator and evolutionary conserved mechanisms
The Knut and Alice Wallenberg foundation (KAW)
SEK: 39 700 000 (co-applicant) - 2020-03958, 2021-2024, Establishment of photosynthesis, a tale of two genomes
Research Grants Open call 2020 Swedish Research Council (VR)
SEK: 4 200 000 (main applicant)
Former group members:
Postdocs
Anasoya Mohaptra, Tatjana Kleine, Elisabeth Ankele, Aurora Piñas-Fernández, Jehad Shaikhali, Juande Barajas-López, Mats-Jerry Eriksson, Carole Dubreuil, Manuel Guinea Díaz, Sonali Ranade, Sofie Grönlund, Nico Blanco, Tim Crawford, Qi Yang, Nora Lehotai, Jannek Hauser, Tamara Hernández-Verdeja, Carmen Hermida-Carrera
PhD students
Peter Kindgren, Louise Norén, Jimmy Kremnev, Yan Ji
CV Å. Strand
Grants
Major grants
Publications
Svenska
I den eukaryota cellen kodas inte bara proteiner i cellkärnan, utan mitokondrien och växternas kloroplaster har egna genom. Ett komplext nätverk av regulatoriska signaler koordinerar genuttryck från cellkärnan med genuttryck från organellerna.
Viktiga strukturer och metabolismvägar i mitokondrien och i växternas kloroplaster byggs upp både av proteiner som kodas i cellkärnan och av proteiner som uttrycks i organellen. Denna fördelning av information mellan de olika genomen kräver en rigoröst koordinerad reglering av genuttryck från kärnan och från organellerna.
För växten är detta nödvändigt för utveckling och tillväxt men även för fysiologisk anpassning, d.v.s. stresstolerans. Genuttryck i cellkärnan regleras av olika signaler som har sitt ursprung i organellerna och i min forskargrupp studerar vi dessa regulatoriska signaler. En ökad förståelse för hur kommunikationen mellan kloroplasten och cellkärnan fungerar skulle på sikt kunna leda till en bättre förmåga att modifiera växters stresstolerans och produktivitet.